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Complete Set of Commutable Observables Suppose A, B hermite and [A, B] = 0.

o There exists (at least) a basis of common eigenvectors that diagonalize them both.

e It is possible to construct an orthonormal basis of the state space by the eigenstates that are common to both observ-
ables, i.e. A|¢;) = al;) and B ;) = by;).
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C.S.C.0. would have following properties:

o All observables commute by pair.

o Specifying the eigenvalues (from the measurement) would uniquely determine a common eigenstate.

Momentum and Position Konwing the position representation, we can find out the momentum representation and vice

versa.

1 .
p(x) = (x|p) = \/ﬁe”’w/ﬁ the constant factor is to satisfy orthonormal condition (p’|p) = d(p’ — p)

_ ) = 1 efipa:/h

Any state [1)) can be expressed in both representations:

v(e) = (el = [ (al) o) ap = — " ey dp
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o) = ol = [ " (pla) (xl) dz = ¢217n / T ey () da

Thy are releated by Fourier Transform:
k= % then:
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Time evolution of wave function:

Probability Current in Quantum The local conservation of charge is expressed as:

dp(r, 1)
ot

+V-Jrt)=0

In Quantum Mechanics, the total probability (¢|1) is conserved, and the local probability density is p(x,t) = ¥*¢. For wave
function satisfying Schrodinger Equation, we can define a probability current so that the local conservation is satisfied.

Its regorous definition is:

-

h
I(z,t) = 5 — (Y*VY =9y Vy7)

For a plane wave type ¢(x,t) = Aetkz=wt) “the probability current is:

hk
J(z,t) = |A]*== which is analogous to the intensity in EM wave
m

2 Schrodinger Equation
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Ehrenfest’s Theorem

3 1-D Potential Problem

The general steps of solving 1-D potential well problem is to first solve the time independent Schrédinger equation in
each region, then apply boundary conditions to determine the coefficients of the wave function.

Also, In some cases, the initial state is not an eigenstate of the Hamiltonian, then we can expand it in terms of eigenstates

by Fourier Transform or Fourier Series.

General Properties of Wave Function
o wave function solutions to Schrédinger equation need single valued continuous.
e solutions should be normalizable, at least for bound states.

« if potential possesses space symmetry, i.e. V(z) = V(—x), then the wave function should be either even or odd.



Free Particle A particle in free space means that V(z) = 0 everywhere.

. 1.
In x representation is  (x|p,t) = e F/ (z[p) = 7/36’(’”*“”5)
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Infinite Potential Well
0 O<z<a
V(z) =
oo everywhere else
Its solution is ¥(x) = C cos(kx) 4+ Dsin(kx), where k = v2mE /h. Considering boundary condition, C' = 0,k = =,
n*m?h?  Rk2

2ma?  2m

ute) = [ Zsin (222
U, (z,t) = \/zsin (?) e iEnt/h

They are mutually orthogonal / Ve ()Y () dz = dpm,

E, =

Potential Step

0 x<0 regionl
Vi(z) =

Vo >0 regionIl

Case E >V
Y1(x) = Ae™™” 4 Be™™*17  for region I where ki = V2mE/h
Yo(x) = Ce'*2™ 4 De=*2%  for region IT where ko = /2m(E — Vp)/h

Apply boundary condition at x = 0:
1 1 A (1 1 C
ki —k B ko —ko/ \D
Define M matrix and S matrix:
A _
¢ =M M is called transfer matrix M = i Rt ke ke =k
D B 2k2 k‘g — k‘1 kl + kg
B A k1 —k 2k
=5 S is called scattering matrix S = 1 (R 2 2
C D kl + k2 2k1 kz — kl
M= i —detS Soo
Sl2 —511 1

S — 1 —M21 1
M22 det M M12

Their relation is:
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R = M = ’A reflection ratio
Jini
j ke |C P
T= ]t.mn = kﬁ 1 transmission ratio
Jini 1

When initially we only have waves travelling towards right, then D = 0.

B ki—k C 2k

A ki+k A EL+ ko




Case FE <V
Y1 (z) = Ae'1® 1 Be= 1% for region I where ki = V2mE/h

Yo(x) = De™"2*  C has to be 0 for region Il where k) = v/2m(Vy — E)/h
Apply boundary condition at x = 0:

A+B=D and ik (A—B)=—kD
Eiklfikg D 2k1

Ay tiky A ky+ ik

There will be total reflection, i.e. R = ‘B

Potential Barrier

Vo 0<zx<a
V(z)

0 everywhere else

Case F > V)

Y1 (x) = Ae'1® 4 Be~™*1®  for region I where k; = V2mE/h
Yo(x) = Ce*2® 4 De=*2%  for region IT where ko = /2m(E — Vp)/h
Y3(x) = Fe'f'® 4 Ge™™ 1% for region IIT

Apply boundary condition at x =0 and x = a:

A+B=C+D
ki(A— B) = ks(C — D)
Cetk2e | De=ikea _ peikia 4 Go—ikia
ko(Cei*2e — De=ik2a) = k) (Feit1a — Ge=ikae)

The strategy is to eliminate C' and D to get relation between A, B and F,G.

F 4k)1k26_ikla

A" Akiky cos(kza) — 2i(k? + k2) sin(kza)
2

ki|F Ak2K2 1 <k§k§)2 L
T=22%] = =1/(1+- 3
Al TR Rt YT Teg ) S (ke
R = ‘B 2:1—T: (k%-k'%)zsin2(.k'22>
A 4k2k2 + (k3 — k2)2 sin®(kza)

k2 — k2’ V2 1 E
g 1 2\ _ 0 _ - =
e ( kiks ) B(E-Vy) e-1 = T
1
= T — is maximum (equals 1) whenever koa =mm,m =1,23,---
1 + m Sin (kQG/)

sin? (kga)
4e(e — 1) 4 sin?(kqa)

Case F <V}

Y1(x) = Ae’*1® 4 Be= ™ for region I where ki = V2mE/h

Po(x) = Ce® + De™ 2 for region 11 where kb = \/2m(Vy — E)/h
Y3(x) = Fe'™® 4 Ge™™ % for region III



Replace all the ko by ik} in previous calculation, we get:

F e*ik‘la
A cosh(kpa) + B2 sinh(kya)
- ‘F : 1
A cosh?(kba) + %%2%2)2 sinh?(kba)
K2 — k2 1% 1 E
S. 1 2 = 0 = =
e < ik ) EE-Vo) ee-1 © 7w
1
T= 1 o2 (1
]. —+ m Slnh (kQCL)
kha
T ~16(1 — e)e 227 as a gets large, i.e. k) >1 thus sinh(kba) ~ e

1 = # threshold for width of barrier

Tk om(V - E)

ao

Finite Potential Well
Vo for—a<zx<a

0 everywhere else

Bound Case —V; < E <0 General solution is:

Y1 (x) = AeM®  for region I where ki = \/2m(—E)/h

a(x) = Csin(kex) + D cos(kax) for region IT where ko = +/2m(Vo + E)/h
Y3(x) = Ge ™7 for region III

Exploit the requirement on the odd and evenness of the wave function here to simplify.

Even solution:
’l/)l = A6k117¢2 = DCOS(]CQSC), 1/}3 = Aeiklz
which satisfies D cos(ksa) = Ae R koD sin(kqa) = kiAe k9 = k, tan(kaa) = ky

2

Z a/2mV,

tanz:\/—gfl where Z:]{IQCL,ZO:iO
z h

Odd solution:

2

zZ, av/2mV;

—cotz:\/—o—l where Z:k2a730:70
22 h

2
One has to plot a graph to find the solution, the intersection of tan z or — cot z and 1/ i—% — 1 gives ks, then E. The results
is quantized.

Scattering Case E > 0 This problem is already solved in the "Potential Barrier” part, just take care with ks, 2a.

1 F
T = T where &= —

1+ g sin® (2kea) Vo

k2(2a) = mm  resonance condition for the maximum T



# 1: Finite Potential Well & 2: Harmonic Oscillator

Harmonic Oscillator

Derivation The quantum problem is to solve the Schrodinger Equation for the Potential V' (z) = %ka.

R 4?1
Time independent Schrédinger Equation < —— + 2kx2> W = E

©2m da?
Cosmetic w? = %, = %,g =z %
d2
=>T;§+(K—§2>w=0

Guess work:

P(&) = h(f)e‘fz/2 where h(€) is an even or odd polynomial of £ whose coefficients need to be determined

o0
h(§) =& Z aom€®™  p can either be 0 or 1 corresponding to even or odd series
m=0

Throw the form of () into the Schrodinger Equation and solve for agy,:

d?h dh
@*Q%?HK*WL*O
22m+p)+1-K

2m+p+2)2m+p+1

aA2m+4+2 = ( ) A2m,

If A(€) has infinite terms, then it’s goging to contradict with the normalization condition. So the series must terminate at

some point:
K=22mo+p)+1=2n+1 where n=2mg+p

1
En:(n+§)hw,n:0,1,2,~-

—2(n—j)

Qji9 = ————>—a,; where n,j is both even or odd
REGENG+Y !

Determine the Wave Function Generally, for given n, one has to throw into the recursion relation and normalize
the wave function.

Hy=1 H, =2¢ Hy, =4£6% -2
Hy =863 — 126  Hy =166* — 486> +12  Hs = 326° — 16063 + 120

n x? d" —z2
H,(z)=(-1)"e P
mw\ 1 1 —e2



4 Hydrogen Atom

Hydrogen Atom is the only atomic element which has a single electron and thus simplest Hamiltonian and has rigorous

analytic solution in quantum.

Schrédinger Equation Using center of mass frame, the Hamiltonian will decompose into the free-particle motion of the
total mass, and relative motion of reduced mass.

The Hamiltonian of relative motion is:

h? e? meM
Hiotar = —5—V*+V here V(r) = — m=—
total om " T () where V(r) dreor’ " me + M,
since V (r) is spherically symmetric, the Schrodinger Equation can be solved in spherical coordinate:
0? 0? 0?
Vi=s —+—+-—

A0 (0N, 1 o (0N 1 o
r29r or r2sin 6 00 o0 r2sin? § 0¢?

1 92 1
=t
(10 (,0 19 0 1
h - 1e E . _ - 27 P 1 _ _— = E
Schrodinger Equation 5 <r2 o (7“ 6r) t 2and 90 (Sln980> Ry 8(1)2) Y+ V(r)y (4

Wave function can be separated (r,0,¢) = R(r)Y (0, ¢) = R(r)0(0)2(¢)

1d /[ ,dR\ 2ms? B 1/ 1 9 (. oY 1 9%y
Rdr(r dr) ~ g V=B =+l =5 (smaae(smeae) +sin20<%52>

These are the two differential equations need to be solved.

Angular Part

L/ ,d/.  dO 2, o 1d%®
5 (bln9d6(51n0d0>)+l(l+1)SIH 0=m*= B 402

general form of ®: ®(¢) = eime
m=0,£1,£2,--- since P(¢+ 27) = P(¢)

general form of ©: ©O(0) = AP"(cosf) A is a factor determined by normalization

m dlml
P (z)=(1- xQ)% ] () P™(x) is called associated Legendre function
€T m
1 d o, ! .
P(z) = 1 dal (z* = 1) the Legendre Polynomial
ldx

For orbit angular momentum:
L*Y(0,¢) =1(1+1)R*Y(0,¢) and L* = —A%R?
A?Y (0, )

I+ 1)Y(0,4) then make substitution

o))

Ly = —ih% and LzY(0,¢) = mhY (6, )
Expressions of Legendre Polynomials:
Py(z) =1,Pi(z) =z, Pa(x) = %(3962 -1)
Py(z) = %(5333 —3z), Py(z) = é(35x4 — 3022 + 3), Ps(x) = %(63965 — 702 + 157)
Py =1
P} =sinf, P) = cosf
P} = 3sin® 0, Py = 3sinfcosf, Py = %(3 cos® 6 — 1)

1
P} = 15sin® 0, P? = 15sin? A cos 0, Py = gsintﬁ)(&:os2 0—1),P) = 5(5 cos® § — 3 cos )



Now Y (0, ¢) is expressed as Y,"(0, ¢), the spherical harmonics (eigenfunction for the orbital angular momentum), and the

Legendre polynomial is meaningful when [ = 0,1,2,--- and m = —I,—l+1,--- ;I — 1,[. In the angular momentum theory,

|L| = /I(l 4+ 1)h and L, = mh.

T 27
/ d9/ do |V *sinf =1
0 0

which is normalization condition over angular part

- ()

Y = i %0059 Yy = i 7Sin9€ii¢
! 4 L 8T
1 1
YO_ 5 2 3 20 1 Y:I:l_ 2 ing 0ii¢Y:|:2_ 15 2 -29i2i¢
> =\ 160 (3cos”0—1),Y; F g | sinfcosfe™, 1™ = | o | sin"fe
1 1
7\?2 21 \? ; 1051 2 :
0 3 +1 : 2 +i +2 i .2 +24
Yy = (167r) (5cos® 0 — 3cosb), Y ::F<M7r) sinf (5cos®6 — 1) e 2 Y = (3277) sin? 6 cos fe*2®
1
3 ‘
Ygi?’ =F —35 ) sin® fet31®
64m

20+ 1)(1 - ! ;
Y0, 0) = e\/( 4;0)_?_ |m||;)'1|) P (cos6)e™™?  general formula for spherical harmonics

T 27
/ do / do Y, *Ylm sinf = 6y 0y eigenfunctions for Hermitian operator L must be orthogonal
0 0

Radial Part

define a function w(r) = rR(r)

2 12 2
g+ (V04 g ) u=Bu

© 2m dr? 2m 12
. . I(1+1)n* , .
effective potential is Veyp =V + o analogous to classical, angular momentum is I+ DR
mr
d? I(1+ 1)R? V=2mE 2
71; = <1 _ + (Jrz)) u with substitution k= mn ,P0 = me 5, p = kr
dp P p h 2megh’k

guess: u(r) =v(p)p'tle ™ w(p) is polynomial v(p) = chpj
3=0

ot — 2 +1+1)—po
UG DG+ 20+ 2)

Similar to the method of harmonic oscillator, cutoff condition implies quantized energy.

2(jo+1+1)=po for some integer jo n:=jo+I1+1 and py=2n

energy relation: py = mee! mee*
. 0 = = —
(2megh?)2k2 8m2e2h’n?2

1 (m. [ 2 \°\ F
En = —— 5 _— = —
n2 \ 2n% \4meg n?

m 62 2
E = : < ) = —13.6eV

2m? \dreo
- mee? 1 mee? 1
N 27r60h2p0 B %4’/T60h2 B %7
B 47T607L2

ag 5~ = 0.529 x 107%m  Bohr radius
mee



To specify cg, apply normalization condition:

_3 _r
Rip=2a 2¢ =

]. T ]. T
R20 = 720,7% (]. - L) e 2a R21 = 7@7% <I) e 2a

Conclusion The complete result is:

complete restriction: n =1,2,3,--- principal quantum number
l=n—-1n-2/---,0 orbital angular momentum quantum number
m=-l,—l+1,---,l—1,1 magnetic quantum number

|’I’L, [ m> — Ynim (Ta 0, (Z)) :Rnl(r)yvlm(ev (b)

Probability density is:
p(r) o 7“2|Rnl(7“)|2 if Ry10, p(T)maz is aquired at Bohr radius ag

Equivalently Py, 14, = |1/)|247rr2 dr.
5 Math Cheatsheet

= Az = (2°) — (z)®  for Gaussian wavefunction f(z) = e/

o
V2
Trigonometric Identities

1
sinasinb = i(cos(a —b) — cos(a + b))

Intergral

/oo e—az(ac+b)2 do = ﬁ
—o0

a

Properties of Delta Function

o d(z) =0(—x)
o d(ax) = ﬁé(m)



