235U与低能中子截面的自旋关联

中子物理导论第三次大作业

司书屹 杨哲涵

工程物理系

2024-10-15

目录

引言	2
早期的理论假说	<i>6</i>
自旋态验证	10
总结	20
参考文献	22

引言

从大约上世纪 40 年代开始,人们在尝试用共振理论解释核截面时遇到了各种问题.尤其是对于²³³U, ²³⁹Pu等裂变核素,它们的核截面在低能区(热中子区)显得尤为反常,具体表现在

- 1. 无论是总截面 σ_{nT} ,抑或单是裂变截面 σ_{nf} ,其数值都异常的大
- 2. 共振峰的形状,尤其是²³⁵U能量最小的两个共振峰,相对宽度中心并不对称,不符合 Brite-Wigner 公式的预期
- 3. 即使是位于共振峰之间的能量区域,其截面数值也远远超过了理论预期

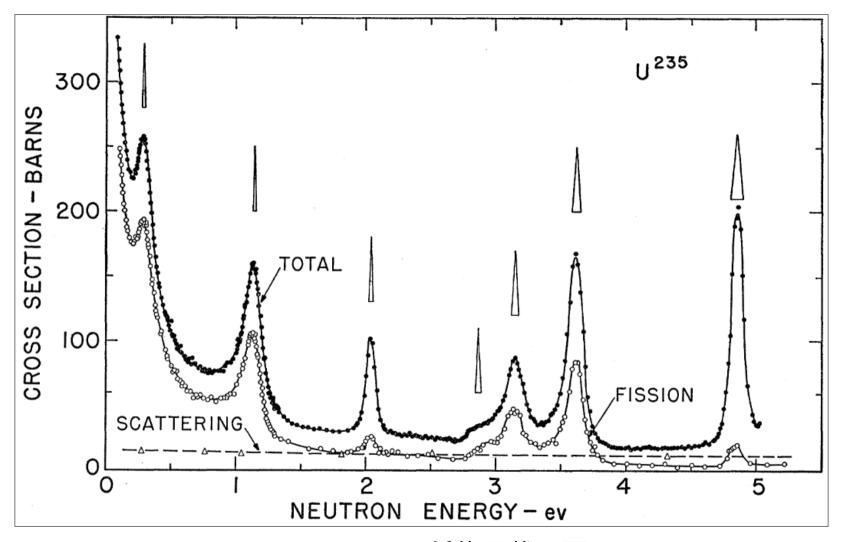


Figure 1: U-235 低能区截面图

为了解释低能区的此类反常现象,学者们提出了各种假说,尝试了多种模型拟合,例如

- 存在"负能量"共振峰导致的"背景"截面[1]
- 尝试跳出单能 Breit-Wigner 公式的束缚,用多级色散理论等解释.[2,3]

由于裂变核在低能区域的裂变宽度与共振峰间隔相当,不同共振峰之间的相干效应往往被优先考虑,而自旋态又恰是影响此类干扰强度的不可忽视的一部分.

因此,不同学者的解释往往绕不开对不同共振能级自旋态关系的猜测,百家争鸣,但总无定论.

直到 60 年代,才终于有学者给出较为严谨的实验证明.通过极化中子与极化核的透射实验, 给出了几组低能区共振峰的自旋态关系.[4]

早期的理论假说

"负能量"共振

1958年,Brookhaven 国家实验室(美)的 F. J. Shore 和 V. L. Sailor 认为热中子区反常大的截面来自于某种"背景"截面,并假设该截面可以视为负能量区(能量小于 0)存在一个或多个束缚能级导致的共振峰,尝试基于数学方法寻找该存在于假想中的共振峰[1]

通过利用四种拟合模型进行最小二乘拟合,得到了最符合"背景"截面曲线的函数拟合

$$\sigma_{nX}(E) = K \frac{\sqrt{E}}{\left(E - E_0\right)^2}$$

$$\begin{cases} K = 208.5 \text{ barn } (eV)^{\frac{5}{2}} \\ E_0 = -1.45 eV \end{cases}$$

对比描述单能共振峰的 Breit-Wigner 公式

$$\sigma_{n,X}(E) = 4\pi\lambda^2 \bigg(\frac{\Gamma_n \Gamma_{\!\! X}}{\Gamma^2}\bigg) \frac{1}{1 + 4(E-E_R)^2/\Gamma^2}$$

"负能量"共振

因此,Shore 和 Sailor 认为这种"背景"截面近似等价于来自一个位于结合能以下 1.45eV 处, 等效中子宽度 $\Gamma_n^0 = 3.04 \times 10^{-3} eV$ 的较强的单能共振峰的干涉效应

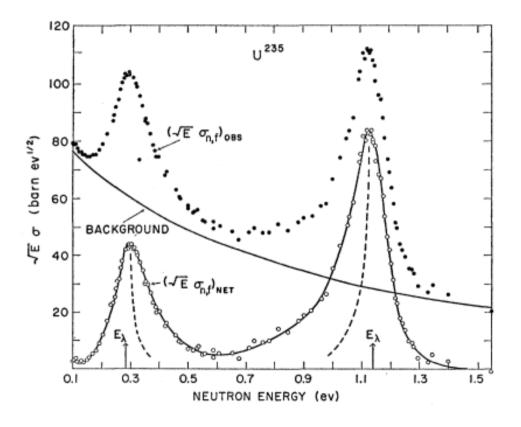


Figure 2: 裂变截面数据曲线

Wigner-Eisenbud 理论

在 Wigner-Eisenbud 理论中,对于入射道c和出射道c',在所有出射角积分后得到的截面表达式为

$$\sigma_{c,c'} = \frac{\pi}{k_c^2} \sum_J \frac{2J+1}{(2i+1)(2I+1)} \big| \delta_{cc'} - U_{cc'}^J \big|^2$$

其中I是靶核的自旋, i是入射粒子的自旋, J是系统的自旋, k_c 是入射粒子相对靶核的动量, $U_{cc'}^J$ 是碰撞矩阵.

对于低能入射中子,只有s波是重要的,从而 $J=I\pm\frac{1}{2}$.如果用n表示入射的s波中子,可以写出总截面的表达式

$$\sigma_{n,T} = \frac{\pi}{k_n^2} \sum_J 2g \operatorname{Re} \{1 - U_{nn}^J\}$$

其中 $g = \frac{2J+1}{(2i+1)(2I+1)}$,称为统计自旋因子[5].

Wigner-Eisenbud 理论

在 Wigner-Eisenbud 理论中,对于入射道c和出射道c',在所有出射角积分后得到的截面表达式为

$$\sigma_{c,c'} = \frac{\pi}{k_c^2} \sum_{J} \frac{2J+1}{(2i+1)(2I+1)} \big| \delta_{cc'} - U_{cc'}^J \big|^2$$

其中I是靶核的自旋, i是入射粒子的自旋, J是系统的自旋, k_c 是入射粒子相对靶核的动量, $U_{cc'}^J$ 是碰撞矩阵.

对于低能入射中子,只有s波是重要的,从而 $J=I\pm\frac{1}{2}$.如果用n表示入射的s波中子,可以写出总截面的表达式

$$\sigma_{n,T} = \frac{\pi}{k_n^2} \sum_{I} 2g \operatorname{Re} \{1 - U_{nn}^J\}$$

其中 $g = \frac{2J+1}{(2i+1)(2I+1)}$,称为统计自旋因子[5].

自旋态验证

简述

1967年, R. I. Schermer和 F. J. Shore等人设计了尽可能严谨的实验.

通过使用极化中子束打击极化的含²³⁵U靶,在不同靶温度下测量透射效率,计算得到了各种热中子能量下,不同含²³⁵U物质的自旋态截面比.

从而确定了低能区各个共振峰截面的自旋态关系,并尝试计算其具体组成比例.

截面与极化度

极化中子和极化核之间的作用截面满足如下公式

$$\sigma = \frac{I}{2I+1}(1-f_Nf_n)\sigma_- + \frac{I+1}{2I+1}\bigg(1+\frac{I}{I+1}f_Nf_n\bigg)\sigma_+$$

其中 f_n, f_N 分别表示中子和核的极化度, σ_\pm 表示两种自旋方向 $J = I \pm \frac{1}{2}$ 的截面

为简便处理,将基底变换为极化相关和无关量

$$\sigma = \sigma_0 + f_N f_n \sigma_p$$

其中

$$\begin{cases} \sigma_0 = \frac{I+1}{2I+1}\sigma_+ + \frac{I}{2I+1}\sigma_- = \sigma_{I+1/2} + \sigma_{I-1/2} \\ \sigma_p = \frac{I}{2I+1}(\sigma_+ - \sigma_-) = \frac{I}{I+1}\sigma_{I+1/2} - \sigma_{I-1/2} \end{cases}$$

透射率与截面比

本实验通过测量中子束穿过靶的透射率来细化分析截面比和极化度.记 \mathcal{T}_P , \mathcal{T}_A 分别是中子束极化方向与外加磁场同向和反向时的透射率,我们关心的是透射效率

$$\mathcal{E} = rac{\mathcal{T}_P - \mathcal{T}_A}{\mathcal{T}_P + \mathcal{T}_A}$$

其与极化相关截面 σ_p 满足如下近似关系

$$\mathcal{E} \approx -\frac{1}{2}(1+\varphi)f_n\left(\frac{\sigma_p}{\sigma_0}\right)f_NN\sigma_0t$$

- $\frac{1}{2}(1+\varphi)f_n$: φ 是极化反转效率, f_n 是中子极化度.可预先测量或设定
- $\binom{\sigma_p}{\sigma_0} f_N$:核极化度 f_N 的数值和符号依据超精细作用的符号和强度,可通过测定核的自旋哈密顿量进一步计算[6]
- $N\sigma_0 t$: N是靶核数密度,t是靶厚度.可通过非极化样品实验测定

透射率与截面比

本实验通过测量中子束穿过靶的透射率来细化分析截面比和极化度.记 \mathcal{T}_P , \mathcal{T}_A 分别是中子束极化方向与外加磁场同向和反向时的透射率,我们关心的是透射效率

$$\mathcal{E} = rac{\mathcal{T}_P - \mathcal{T}_A}{\mathcal{T}_P + \mathcal{T}_A}$$

其与极化相关截面 σ_p 满足如下近似关系

$$\mathcal{E} \approx -\frac{1}{2}(1+\varphi)f_n \bigg(\frac{\sigma_p}{\sigma_0}\bigg)f_N N \sigma_0 t$$

- $\frac{1}{2}(1+\varphi)f_n$: φ 是极化反转效率, f_n 是中子极化度.可预先测量或设定
- $\binom{\sigma_p}{\sigma_0} f_N$:核极化度 f_N 的数值和符号依据超精细作用的符号和强度,可通过测定核的自旋哈密顿量进一步计算[6]
- $N\sigma_0 t$: N是靶核数密度,t是靶厚度.可通过非极化样品实验测定

透射率与截面比

本实验通过测量中子束穿过靶的透射率来细化分析截面比和极化度.记 \mathcal{T}_P , \mathcal{T}_A 分别是中子束极化方向与外加磁场同向和反向时的透射率,我们关心的是透射效率

$$\mathcal{E} = rac{\mathcal{T}_P - \mathcal{T}_A}{\mathcal{T}_P + \mathcal{T}_A}$$

其与极化相关截面 σ_p 满足如下近似关系

$$\mathcal{E} \approx -\frac{1}{2}(1+\varphi)f_n\left(\frac{\sigma_p}{\sigma_0}\right)f_NN\sigma_0t$$

- $\frac{1}{2}(1+\varphi)f_n$: φ 是极化反转效率, f_n 是中子极化度.可预先测量或设定
- $\binom{\sigma_p}{\sigma_0} f_N$:核极化度 f_N 的数值和符号依据超精细作用的符号和强度,可通过测定核的自旋哈密顿量进一步计算[6]
- $N\sigma_0 t$: N是靶核数密度,t是靶厚度.可通过非极化样品实验测定

实验装置及样品制备

实验装置

如右图所示,实验所用含²³⁵U的样品均被制备成长方体板,喷锡后焊接在到导热性能良好的铜套上,铜套的另一端与铜线相焊,铜线的最末端则是冷却盐.

实验者使用了了配备有低温恒温器的极化中子晶谱仪来利用"static method"制备极化中子束.该方法包括了两步绝热退磁处理

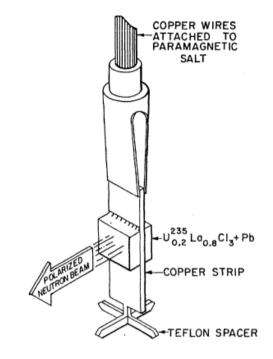


Figure 3: 实验装置示意图

实验装置及样品制备

样品制备

由于 235 U自身难以在外场下产生较强极化,以及 234 U杂质的 α 衰变的产热不可忽略.实验者挑选了三种不同的含 235 U材料,其中只有含铀三氯化物 235 U $_x$ La $_{1-x}$ Cl $_3$ 能在外场下产生足够的极化度以进行较为精确的数据分析,并制备了浓度不同的五个样品,如下

• 纯铀金属,²³⁴U杂质含量为 0.1%

(Q 0.1%

- UFe_2 金属间化合物, ^{234}U 杂质含量为 1.1% 杂质产热最强, 且并非良热导体
- 235 U $_{0.2}$ La $_{0.8}$ Cli $_3$,增大铀浓度可以提高透射效率,但更高的铀浓度(x>0.2)可能会导致材料的磁性质在所测温度范围内发生变化
- ${}^{235}\mathrm{U}_{0.02}\mathrm{La}_{0.98}\mathrm{Cli}_{3}$,降低铀浓度有利于更好地控制温度,且让样品在更低温下保持顺磁性
- $U_{0.2}La_{0.8}Cli_3$,正常同位素丰度的铀氯化物, ^{235}U 含量 0.7%

数据分析与结论 数据采集

Target	Neutron energy (eV)	Temp. range
²³⁵ U metal	0.075	$T=1^{\circ}$ K and $T\leq 0.18^{\circ}$ K
²³⁵ UFe ₂	0.078	<i>T</i> <1°K −
	0.115	<i>T</i> <1°K
	0.275	T < 1°K
²³⁵ U _{0.2} La _{0.8} Cl ₃	0.075	$0.070 \le T \le 1^{\circ}$ K
****	0.115	$T=1^{\circ}K$ and $T\leq 0.15^{\circ}K$
	0.275	$T=1$ °K and $T \leq 0.15$ °K
	0.364	<i>T</i> <0.15°K −
	0.584	$T \leq 0.15^{\circ} K$
	0.835	<i>T</i> ₹ 0.15°K
	1.14	<i>T</i> <0.15°K
	2.04	$T \leq 0.15$ °K
$U_{0.2}La_{0.8}Cl_3$	0.075	$T=1$ °K and $T \le 0.1$ °K
(normal isotopic	0.275	$T=1^{\circ}$ K and $T < 0.1^{\circ}$ K
àbundance)	1.14	$T=1$ °K and $T \leq 0.1$ °K
$^{235}\mathrm{U}_{0.02}\mathrm{La}_{0.98}\mathrm{Cl}_{3}$	0.075	$T=1$ °K and $T \leq 0.2$ °K

T degrees Kelvin	$N(U)t$ 10^{-3} atoms/bn	0.075 eV $Pu^{239} \text{ filter}$ $f_n = 0.84$
0.10	5.77	0.046 ± 0.012
?	6.88	-0.333 ± 0.090^{a}
0.10	2.23	1.344 ± 0.026
0.10	2.20	-0.110 ± 0.028
0.10	2.23	1.454 ± 0.038
0.10	0.255	0.073 ± 0.012
0.10	0.255	$0.107 \pm 0.022 < \epsilon <$
		0.115 ± 0.025
	0.10 ? 0.10 0.10 0.10 0.10	degrees 10 ⁻³ Kelvin atoms/bn 0.10 5.77 ? 6.88 0.10 2.23 0.10 2.20 0.10 2.23 0.10 0.255

Figure 4: 测量范围

Figure 5: 截面数据示例

图 3 中记录了所进行的各组实验的实验条件,不同样品在不同中子能量和温度范围内进行了多组实验;图 4 截取了其中中子能量为0.075eV时各组经处理后的透射效率 \mathcal{E}

数据分析与结论

数据处理

可以从数据特征中观察到一些意料之中的现象,以佐证实验的有效性,例如

由于在绝热退磁后冷藏盐的温度会缓慢上升,而透射效率可以分为温度无关的电子效应项和温度相关的核效应项,即

$$\mathcal{E} = \alpha + \frac{\beta}{T}$$

因此可以拟合计算 α 的数值.对于非磁性样品例如纯铀金属, α 应等于 0;而对于磁性样品, α 应随着入射中子能量上升而迅速下降.这两点均得到了数据支持

由于²³⁴U杂质α衰变放热以及存在导热上限,样品所能保持的温度存在一个下限,且不同样品的下限不同.如右图所示

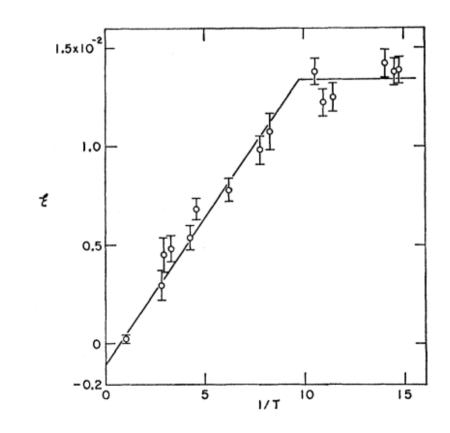


Figure 6: 透射效率与温度倒数关系曲线

数据分析与结论

结论

在对各组样品的背景干扰做了修正,考虑了样品厚度的归一处理,以及将谱仪分辨率纳入误差分析后.根据前文所述实验原理,取 235 U $_{0.2}$ La $_{0.8}$ Cl $_3$ 数据,不同入射中子能量下的截面比与核极化度的乘积 $\frac{\sigma_p}{\sigma_0}f_N$ 如下图所示(2.04eV由于误差过大,仅能确定符号).

认为 f_N 的符号不随中子能量变化而变化,则可得到如下结论

- 0.275 和 1.14eV 的共振处于相反的自旋态.
- 如果 235 U的磁矩为负,则 0.275eV 的共振为 $J=I-\frac{1}{2}=3$
- 能量最低的热中子对应的热截面处于与 1.14eV 相同的自旋态.
- 2.08eV 的共振大概率和 0.275eV 的共振处于相同自旋态

Neutron energy (eV)	$(\sigma_p/\sigma_0) f_N$
0.075	$-2.07\pm0.14\times10^{-2}$
0.115	-2.06 ± 0.10
0.275	$+0.80\pm0.18$
0.364	$+0.26\pm0.18$
0.584	-0.82 ± 0.38
0.835	-1.20 ± 0.48
1.14	-2.78 ± 0.30
2.04	+

Figure 7: 不同中子能量下的截面比与极化度 乘积

数据分析与结论

讨论

我们已知 235 U的基态角动量为 $-\frac{7}{2}$,如果假设其核磁矩取负值,进而其核极化度 f_N 也取负值,那么进一步可以计算出不同共振峰处对应的具体角动量.例如在上述情形下有

$$\begin{cases} J = I + \frac{1}{2} = 4, E_0 = 1.14eV \\ J = I - \frac{1}{2} = 3, E_0 = 0.275eV \end{cases}$$

此外,即使基本只能保证 f_N 数据的数量级准确,但仍可以尝试对截面比的数值进行评估,例如取 0.075eV 的数据计算

$$^{235} ext{U}_{ ext{metal}} : rac{\sigma_{I+1/2}}{\sigma_0} = 0.74$$

这意味着在入射中子能量为 0.075eV 时,纯铀金属中,大约四分之三的截面来自 $I+\frac{1}{2}$ 的自 旋态贡献

总结

大量研究聚焦于低能中子诱发的²³⁵U裂变截面,但目前人们对这个过程的理解也不完整.

裂变是一个多通道过程,已观察到截面共振峰的不对称性,这一不对称性使得单能极的 Breit-Wigner 公式难以解释,需要多能级色散理论等更复杂的模型.

该研究通过利用极化中子技术,通过极化中子与极化靶核的吸收,测量了与自旋态相关的截面比 $\frac{\sigma_p}{\sigma_0}f_N$,并通过数据分析得到了不同共振峰的自旋态关系,尽管数据的精度有限,但仍然是这一问题的重要结论.

在此研究之后,还有若干研究尝试解决没有回答清楚的问题,例如 1974 年 BNL 确定了更精确的自旋依赖,给出了 15 个共振峰的结果,并且确认了²³⁵U的磁矩为负[7].

因此,本文使用的方法和数据分析手段具有重要的开创性意义,为后续研究提供了重要的参考.

参考文献

- [1] F. J. Shore and V. L. Sailor, Slow Neutron Resonances in U^{235} , Phys. Rev. 112, 191 (1958).
- [2] T. Teichmann and E. P. Wigner, Sum Rules in the Dispersion Theory of Nuclear Reactions, Phys. Rev. **87**, 123 (1952).
- [3] E. P. Wigner and L. Eisenbud, Higher Angular Momenta and Long Range Interaction in Resonance Reactions, Phys. Rev. **72**, 29 (1947).
- [4] R. I. Schermer, L. Passell, G. Brunhart, C. A. Reynolds, L. V. Sailor, and F. J. Shore, Spin Dependence of the isotope("U",a:235) Low-Energy Neutron Cross Section, Phys. Rev. **167**, 1121 (1968).
- [5] E. Vogt, Resonance Theory of Neutron Cross Sections of Fissionable Nuclei, Physical Review **112**, 203 (1958).

- [6] H. Marshak, H. Postma, V. L. Sailor, F. J. Shore, and C. A. Reynolds, Spin Assignments of Low-Energy Resonances Using Polarized Neutrons and Polarized Sm^{149} Nuclei, Phys. Rev. **128**, 1287 (1962).
- [7] E. R. REDDINGIUSt, H. POSTMAtt, C. E. OLSENttt, D. C. Rorer, and V. L. Sailor, Spins of low-energy neutron resonances in 235U, (n.d.).