核辐射物理与探测学笔记

杨哲涵

量	値	注释				
k_BT	25.3meV	也是热中子的动能				
$\frac{e^2}{4\pi\epsilon_0}$	1.44 MeV fm					
hc	1240 MeV fm					
$m_e c^2$	0.511 MeV					
Ry	13.6 eV	Rydberg constant				
uc^2	931.494 MeV					

表1 常数表

1. 原子核的基本性质

不确定度关系

- 动量-位置不确定关系
- 能量-时间不确定关系
- 角动量-角位置不确定关系

同量异位素 质量数相同而电荷数不同 镜像核 质子数中子数互换,相等的没有镜像核 质量

- 质量过剩:原子
- 质量亏损:原子核

1.1. 原子核的结合能

定理 1:

$$E^2 - (pc)^2 = (m_0c^2)^2$$

液滴模型 体积能,表面能,库伦能

$$B = a_V A - a_S A^{2/3} - a_C Z^2 A^{-1/3}$$

Weizacker 公式 半经验结合能公式

$$\begin{split} B(Z,A) &= a_V A - a_S A^{2/3} - a_C Z^2 A^{-1/3} \\ &- a_{\text{sym}} (A/2 - Z)^2 A^{-1} + B_P \end{split}$$

$$B_p = \begin{cases} +a_P A^{-1/2} \text{ even-even} \\ 0 & \text{odd} \\ -a_P A^{-1/2} \text{ odd-odd} \end{cases}$$

 a_V a_S a_C $a_{
m sym}$ a_P 15.835 18.33 0.714 92.90 11.2

表 2 Weizacker 公式参数(MeV)

1.2. 核力及核势垒

1.2.1. 核力的性质

- 短程强作用力
- 和电荷无关,这使得中子,质子的能级结构基本 相同
- 具有饱和性,只与临近的几个核子相互作用
- 极短程内存在排斥芯,核子不能无限靠近
- 两核子间的核力与自旋相对取向有关
- 核力有自旋轨道耦合项

1.3. 磁矩和电极矩

1.4. 原子核的统计性质

1.4.1. 费米子

自旋量子数为半整数的称为费米子

- 质子,中子,电子,中微子,μ子
- 交換反对称
- 费米-狄拉克统计
- 不可以占据相同的量子态, 泡利不相容原理

1.4.2. 玻色子

自旋量子数为整数的称为玻色子

- 光子,π介子
- 交換对称
- 玻色-爱因斯坦统计
- 可以占据相同的量子态, 玻色-爱因斯坦凝聚

图 1 标准模型的基本粒子

对原子核而言

• 偶 A 核: 玻色子

• 奇 A 核: 费米子

• 历史上用来否定原子核的质子-电子论

1.5. 原子核的自旋与宇称

1.6. 原子核的能态和核的壳层模型

核的能态结构 原子核是由核子构成的体系, 具有 能态结构

• H 原子沒有能态结构

壳层模型 $j=l\pm s$ 考虑核子的自旋-轨道耦合作用

- 2. 原子核的放射性
- 2.1. 放射性衰变的规律

衰变常数

$$N(t) = N(0)e^{-\lambda t}$$

半衰期

$$e^{-\lambda T_{1/2}} = 0.5$$

 $\lambda T_{1/2} = \ln(2)$

平均寿命 放射性原子核的平均生存时间或存活 概率为 0 的时间

$$\tau = \int t \cdot (-dN(t)) = \frac{\int_0^\infty t \lambda N(t) dt}{N(0)}$$
$$= \int_0^\infty t \lambda e^{-\lambda t} dt = \frac{1}{\lambda} = 1.44 T_{1/2}$$

能级宽度 $\Gamma \tau = \hbar$

• $\Gamma = \hbar \lambda$

活度 $A(t) = \lambda N(t)$

- 单位时间发生衰变的原子核数目,反应放射 源的强弱,注意不是发射的粒子数
- 1 Ci = 3.7×10^{10} Bq = $3.7 \times 10^{10} s^{-1}$

衰变率 $J(t) = \lambda N(t)$

• 与活度定义相同,主要用来描述衰变过程

比活度 $a = \frac{A}{m}$

• 单位质量放射源的放射性活度

2.1.1. 测量半衰期

- 对中等寿命,可直接观察到活度的指数衰减,得 到半衰期
- 对较长寿命,无法看到活度变化,但可以分别测量活度和放射性核素的个数(化学手段),利用 $A = \lambda N$ 即可得到半衰期

2.2. 递次衰变规律

2.2.1. 二次衰变

涉及核素A,B以及稳定核素C

 t_m 主要由衰变常数大的,即半衰期短的决定:

$$t_m = \frac{1}{\lambda_2 - \lambda_1} \ln \left(\frac{\lambda_2}{\lambda_1} \right)$$

总活度为:

$$\begin{split} A(t) &= N_{10}\lambda_1\bigg(e^{-\lambda_1 t} + \\ &\frac{\lambda_2}{\lambda_2 - \lambda_1}\big(e^{-\lambda_1 t} - e^{-\lambda_2 t}\big)\bigg) \end{split}$$

2.2.2. 多次连续衰变规律

对于从数量为 N_{10} 的核素开始的多次连续衰变,衰变链中第n个核素的数量为

$$\begin{split} N_{1}(t) &= N_{10}e^{-\lambda_{1}t} \\ N_{n\neq 1}(t) &= N_{10}\prod_{j=1}^{n}c_{n,j}e^{-\lambda_{j}t} \\ c_{n\neq 1,i} &= \frac{\prod_{j=1}^{n-1}\lambda_{j}}{\prod_{j=1,j\neq i}^{n}\lambda_{j}-\lambda_{i}} \end{split}$$

2.2.3. 长期平衡

2.3. 放射系

估测地球年龄,可用 87 Rb经 β 衰变到 87 Sr的过程来估计,并用稳定核素 86 Sr估计地球形成之初的Sr含量.

天然放射系 地球上存在 3 个长期平衡<u>放射系</u>,此 外有 1 系已经衰变完了

钍系(4n系)

图 2 钍系(4n系)

• 铀系(4n + 2系)从 238 U开始经 14 次衰变到达 206 Pb

图 3 轴系(4n + 2系)

• 锕-铀系(4n+3系)从 235 U开始经 11 次衰变到达 207 Pb

图 4 锕-铀系(4n + 3系)

- 镎系(4n+1系)从²³⁷Np衰变到²⁰⁹Bi
 - ²³⁷Np半衰期远比地球年龄小,至今这一系完全衰变完了
 - 将 238 U放到反应堆用中子照射,连续吸收 3 个中子,经过两次 β^- 衰变形成 241 Pu,再经一次 β^- 衰变,一次 α 衰变形成 237 Np

2.4. 放射规律的一些应用

人工制备放射源 例如通过反应堆或加速器制备 人工放射性核素,产生率为

$$P = N_{\rm target} \sigma_0 \Phi$$

- N_{target} 是样品中用来制备放射源的靶核的总数, 认为在辐照中不变
- σ₀是靶核的热中子截面
- Φ是热中子的注量率

考虑制得的核素自身以 λ 衰变,则照射时间为t时数量及活度为

$$N(t) = \frac{P}{\lambda} \big(1 - e^{-\lambda t} \big)$$

$$A(t) = P(1 - e^{-\lambda t})$$

定义 $S=1-e^{-\lambda t}$ 为饱和因子,那么 $S\left(t\approx6.65T_{1/2}\right)=0.99$. 因此通常制备时照射时间以六七倍半衰期为好.

这5个影响活度的因素,在照射时间足够长时, 退化为3个

短寿命核素发生器 直接制备的短寿命核素活不 完运输过程,因此采用母体-子体的方法

- 母体长寿命,子体短寿命.两者建立暂时平衡
- 每隔 t_m 可以收获最多量的子体

3. 原子核的衰变

3.1. α 衰变

$${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}He$$

衰变能

$$E_0=T_\alpha+T_Y=(m_X-(m_Y+m_\alpha))c^2$$

由于动量守恒.有:

$$E_0 = \frac{m_Y + m_\alpha}{m_Y} T_\alpha \approx \frac{A}{A-4} T_\alpha$$

- 实际中测量的是 T_{α} ,而 T_{Y} 由于 Y 核前进距离太小等原因难以测量
- 探测器中测得的α能谱有宽度,这是由于探测本 身的分辨能力

讨论

• A,Z 越大,α衰变能越大

3.1.1. 势垒穿透模型

Geiger-Nuttall Rule

$$\lg(\lambda) = A - BE_0^{-\frac{1}{2}}$$

α 粒子相对母核的势函数

$$V(r) = \begin{cases} -V_0 & \text{where } r < R \\ \frac{e^2}{4\pi\varepsilon_0} \frac{Z_\alpha Z_Y}{r} & \text{where } r > R \end{cases}$$

当α粒子要带走角动量时,势能要被修正为

$$V(r) + \frac{l(l+1)\hbar^2}{2M_{\alpha}r^2}$$
 where $r > R$

势垒高度

$$V_c = V(R)$$

where
$$R=R_Y+R_{\alpha}=r_0\Big(A_Y^{\frac{1}{3}}+A_{\alpha}^{\frac{1}{3}}\Big)$$

• 其他重核衰变,如 12 C衰变难以发生,原因在于势垒高度与 $Z_{^{12}\mathrm{C}}$ 成正比,这几乎是 α 衰变的势垒高度的 3 倍

势垒宽度

$$b = \frac{Z_{\alpha} Z_{Y} e^{2}}{4\pi \varepsilon_{0} E_{0}}$$

定义 2 Gamow factor:

$$G = \frac{2\sqrt{2\mu E_0}}{\hbar} \int_{P}^{b} \left(\frac{b}{r} - 1\right)^{\frac{1}{2}} \mathrm{d}r$$

3.1.2. 守恒

3.2. β衰变

半衰期范围 10⁻³ s 到 10²⁴ a

类型

- β-衰变: 原子核衰变时发射负电子
- β+衰变: 原子核衰变时发射正电子
- 轨道电子俘获 EC: 原子核从核外的电子壳层俘 获一个轨道电子

讨论

- 经β衰变生成的子核一般处于激发态,激发态发射γ光子或内转换电子跃迁至基态,纯β衰变放射性核素不多
- β衰变宇称不守恒

3.2.1. β^{-} 衰变

$${}_Z^A {
m X}
ightarrow {}_{Z+1}^A {
m Y} + e^- + \widetilde{
u_e}$$

衰变能

$$E_0(\beta^-) = \Delta(Z,A) - \Delta(Z+1,A)$$

3.2.2. β^+ 衰变

$${}_{Z}^{A}X \rightarrow {}_{Z-1}^{A}Y + e^{+} + \nu_{e}$$

衰变能

$$E_0(\beta^+) = \Delta(Z,A) - \Delta(Z-1,A) \label{eq:energy}$$

$$-2m_ec^2$$

3.2.3. 禁戒条件

3.2.4. 轨道电子俘获(EC)

$${}_Z^A\mathbf{X} + e_i^- \rightarrow {}_{Z-1}^A\mathbf{Y} + \nu_e$$

衰变能

$$E_0(\varepsilon) = \Delta(Z,A) - \Delta(Z-1,A) - B_i$$

定理 3 电子结合能公式:

$$\begin{split} B_K(Z) &\approx \mathrm{Ry} \ (Z-1)^2 \\ B_L(Z) &\approx \frac{1}{4} \ \mathrm{Ry} \ (Z-5)^2 \\ B_M(Z) &\approx \frac{1}{6} \ \mathrm{Ry} \ (Z-13)^2 \end{split}$$

3.3. γ跃迁

衰变能 E_{γ} 是 γ 光子的能量, T_{R} 是子核反冲能

$$E_0 = E_i - E_f = E_\gamma + T_R$$

3.3.1. 穆斯堡尔效应

3.3.2. 多级性

定理 4γ 跃迁宇称守恒: γ 跃迁是电磁相互作用,因此宇称守恒,设 π_{γ} 是光子宇称,有

$$\pi_{\gamma} = \frac{\pi_i}{\pi_f}$$

定理 5γ 跃迁角动量守恒: 设跃迁前后原子核角动量分別为 \vec{I}_i 与 \vec{I}_f ,有 $\vec{L}=\vec{I}_i-\vec{I}_f$

$$L = |I_i - I_f|, |I_i - I_f| + 1, ..., |I_i + I_f|$$

定理 6 电多级辐射光子宇称: $\pi_{\gamma} = (-1)^{L}$

定理 7 磁多级辐射光子宇称: $\pi_{\gamma} = (-1)^{L+1}$

讨论

• 光子带走的角动量不能为 0

3.3.3. 概率公式

定理 8 Weisskopf 单质子模型: Weisskopf 假定 γ 跃迁是核内 1 个质子状态变化导致的

$$\begin{split} \lambda_E(L) &= \frac{1}{4\pi\varepsilon_0} \frac{2(L+1)}{L((2L+1)!!)^2} \\ & \left(\frac{3}{L+3}\right)^2 \frac{e^2}{\hbar c} (kR)^{2L} \omega \\ \lambda_M(L) &= \frac{1}{4\pi\varepsilon_0} \frac{20(L+1)}{L((2L+1)!!)^2} \\ & \left(\frac{3}{L+3}\right)^2 \frac{e^2}{\hbar c} \left(\frac{\hbar}{m_P cR}\right)^2 (kR)^{2L} \omega \end{split}$$

讨论

• $\lambda_M(L)$ 一般与 $\lambda_E(L+1)$ 有相同的量级

3.3.4. 选择定则

图 6 $\Delta I = 1$ 的例子

根据γ跃迁初态、末态 Ⅰ元, 求γ跃迁类型与级次:

根据y跃迁性质和初态(末态) IT, 求末态(初态) IT:

3.3.5. 同质异能跃迁

同质异能态 通常将寿命较长(> 0.1s)的核激发态 成为同质异能态

同质异能素 质子数,中子数相同但处在长寿命激发态上的核素称为同质异能素,表示为 ^{Am}X

同质异能跃迁 同质异能态的 γ 跃迁称为同质异能跃迁

讨论

- 高激发态一般不会是同质异能态
- 偶偶核的同质异能态很少
- 奇 A 核的同质异能态最多
- 同质异能态的内转换系数最大

3.3.6. 內转換电子

內转換 原子核将退激能量交给核外电子,使电子 从原子中电离的现象.能量以发射特征 X 射 线或俄歇电子的形式放出.

内转换电子的动能

$$T_e = E_i - E_f - B_i = E_\gamma - B_i$$

这里 B_i 是第i层电子的结合能

主売层	K	L			M				
支壳层		L_1	L ₂	L ₃	M ₁	M ₂	M_3	M ₄	M ₅
电子角动量	1s _{1/2}	2s _{1/2}	2p _{1/2}	2p _{3/2}	3s _{1/2}	3p _{1/2}	3p _{3/2}	3d _{3/2}	3d _{5/2}
电离能	$\epsilon_{\rm K}$	ϵ_{L1}	ϵ_{L2}	ϵ_{L3}	$\epsilon_{\rm M1}$	ϵ_{M2}	$\epsilon_{\rm M3}$	$\epsilon_{\rm M4}$	ϵ_{M5}
Tl∴ε(keV)	85.530	15.347	14.698	12.658	3.704	3.416	2.957	2.485	2.389
$T_e = E_0 - \varepsilon \Rightarrow T_e = 279 \text{keV} - \varepsilon$									
内转换电子 能量	T _e (K)	$T_e(L_1)$	T _e (L ₂)	T _e (L ₃)	T _e (M ₁)	T _e (M ₂)	T _e (M ₃)	T _e (M ₄)	T _e (M ₅)
$T_e(keV)$	193.67	263.853	264.502	266.542	275.496	275.784	276.243	276.715	276.811
$E_0 > \mathcal{E}_K$ $\mathcal{E}_K > E_0 > \mathcal{E}_L$ 内转换主要发生在 K 壳层上 $\mathcal{E}_K > E_0 + \mathcal{E}_L$					$\mathcal{E}_L > E_0 > \mathcal{E}_M$ 内转换主要发 生在M壳层上				

内转换系数

$$\alpha \coloneqq \frac{\lambda_e}{\lambda_\gamma} = \frac{n_e}{n_\gamma}$$

注意 $\lambda_{\gamma}(1+\alpha)$ 才是两个能级间跃迁过程对应的 衰变常数

讨论

退激时,发射内转换电子和发射光子是互相竞争的

3.4. 衰变纲图

4. 原子核反应

具有一定能量的粒子轰击靶核,使其组成或能量状态发生变化,成为不稳定核素,并放出粒子.

讨论

- 涉及的能量可以很高
 - · 中高能反应能量可以达到几百 MeV
- 可以产生不稳定核素
- 4.1. 原子核反应概况
- 4.2. 核反应和 Q 方程

$$a + A \rightarrow b + B$$

定理 9 核反应中的能量守恒:

$$\left(m_a+m_A\right)^2+\left(T_a+T_A\right)=\left(m_b+m_B\right)^2+\left(T_b+T_B\right)$$

定义 10 反应能 O:

$$\begin{split} Q &= (T_b + T_B) - (T_a + T_A) \\ &= (m_a + m_A)c^2 - (m_b + m_B)^{c^2} \\ &\approx (\Delta_a + \Delta_A) - (\Delta_b + \Delta_B) \\ &= (B_b + B_B) - (B_a + B_A) \end{split}$$

- Q > 0: 放能反应
- Q < 0: 吸能反应

• 如果余核处在激发态 E^* ,那么有 $m_B^*=m_B+rac{E^*}{c^2},Q'=Q-E^*$

定理 $11 \, \mathbf{Q}$ 方程: 假设靶核A静止, \mathbf{Q} 方程将出射粒子的动能 T_b 与入射粒子动能 T_a ,出射粒子的方向 θ ,反应能 \mathbf{Q} 把这四个量联系起来

$$\begin{split} Q &= \bigg(1 + \frac{m_b}{m_B}\bigg)T_b - \bigg(1 - \frac{m_a}{m_B}\bigg)T_a \\ &- \frac{2\sqrt{m_a m_b T_a T_b}}{m_b}\cos\theta \end{split}$$

$$\begin{split} \sqrt{T_b} &= \pm \Biggl(\Biggl(\frac{A_B - A_a}{A_B + A_b} + \frac{A_a A_b}{\left(A_B + A_b\right)^2} \cos^2 \theta \Biggr) T_a \\ &+ \frac{A_B}{A_B + A_b} Q \Biggr)^{1/2} + \frac{\sqrt{A_a A_b T_a}}{A_B + A_b} \cos \theta \end{split}$$

4.3. 实验室坐标系与质心坐标系

4.4. 核反应截面和产额

定义 12 <mark>截面</mark>: 反映一个入射粒子与单位面积上的 一个靶核发生反应的概率

$$\sigma = \frac{N'}{IN_s}$$

定义 13 总截面: 不同反应道有各自截面,分截面之和称为总截面

$$\sigma = \sum_i \sigma_i$$

定义 14 微分截面:

定义 15 产额: 入射粒子在靶中引起的核反应数 N'与入射粒子数 I_0 之比

$$Y = \frac{N'}{I_0}$$

定理 16 中子入射的产额:

$$Y = 1 - e^{-\sigma ND}$$

- 对于薄靶,有 $Y \approx \sigma ND$
- 对于厚靶,有 $Y \rightarrow 1$
- 4.5. 核反应中的分波分析
- 4.6. 核反应机制及核反应模型
- 4.6.1. 复合核机制
- 复合核如何衰变与它如何形成无关
- 反应在10⁻¹⁵s 量级
- 入射粒子能量不太高: 10-20MeV
- 靶核质量较大
- 5. 辐射与物质的相互作用
- 5.1. 重带电粒子
- 5.2. 快电子
- 6. 辐射与物质探测中的统计学

用样本方差代替统计涨落的估计值意味着放弃了 对分布处于泊松分布的先验知识,结果算出来的 误差一定偏大.