
Note on Electrodynamics
This note is based on the textbook Classical
Electrodynamics 3rd edition (John David
Jackson) as well as 电动力学简明教程 (俞允强).

Vector Calculus
Scalar Triple Product

⃗𝐴 ⋅ (𝐵⃗ × ⃗𝐶) = 𝐵⃗ ⋅ ( ⃗𝐶 × ⃗𝐴) = ⃗𝐶 ⋅ ( ⃗𝐴 × 𝐵⃗)

Vector Triple Product
BAC-CAB rule: ⃗𝐴 × (𝐵⃗ × ⃗𝐶) = 𝐵⃗ × ( ⃗𝐴 ⋅ ⃗𝐶) − ⃗𝐶 ×
( ⃗𝐴 ⋅ 𝐵⃗)

Product Rules
𝛁(𝑓𝑔) = 𝑓𝛁𝑔 + 𝑔𝛁𝑓

𝛁( ⃗𝐴 ⋅ 𝐵⃗) = ⃗𝐴 × (𝛁 × 𝐵⃗) + 𝐵⃗ × (𝛁 × ⃗𝐴) + ( ⃗𝐴 ⋅
𝛁)𝐵⃗ + (𝐵⃗ ⋅ 𝛁) ⃗𝐴

𝛁 · ( ⃗𝐴 × 𝐵⃗) = 𝐵⃗ ⋅ (𝛁 × ⃗𝐴) − ⃗𝐴 ⋅ (𝛁 × 𝐵⃗)

𝛁 × ( ⃗𝐴 × 𝐵⃗) = (𝐵⃗ ⋅ 𝛁) ⃗𝐴 − ( ⃗𝐴 ⋅ 𝛁)𝐵⃗ + ⃗𝐴(𝛁 ·
𝐵⃗) − 𝐵⃗(𝛁 ⋅ ⃗𝐴)

𝛁 · (𝑓 ⃗𝐴) = 𝑓(𝛁 · ⃗𝐴) + ⃗𝐴 ⋅ (𝛁𝑓)

𝛁 × (𝑓 ⃗𝐴) = 𝑓(𝛁 × ⃗𝐴) − ⃗𝐴 × (𝛁𝑓)

Second Derivatives
𝛁 · (𝛁𝑇) = (𝛁 · 𝛁)𝑇 = ∇2𝑇

𝛁 × (𝛁𝑇) = 0

𝛁(𝛁 · ⃗𝑣)

𝛁 · (𝛁 × ⃗𝑣) = 0

𝛁 × (𝛁 × ⃗𝑣) = 𝛁(𝛁 · ⃗𝑣) − ∇2 ⃗𝑣

Coordinates
Cylindrical Coordinates

Theorem 1 (Gradient in Cylindrical
Coordinates):

𝛁 = ̂𝒆𝝆
𝜕
𝜕𝜌

+ ̂𝒆𝝓
1
𝜌

𝜕
𝜕𝜙

+ ̂𝒆𝒛
𝜕
𝜕𝑧

(1)

Theorem 2 (Laplacian in Cylindrical
Coordinates):

∇2 = 𝜕2

𝜕𝜌2 + 1
𝜌

𝜕
𝜕𝜌

+ 1
𝜌2

𝜕2

𝜕𝜙2 + 𝜕2

𝜕𝑧2 (2)

Special Functions
Definition 1 (Complete elliptic integral of

the first kind):

𝐾(𝑘) = ∫
1

0

d𝑥
√(1 − 𝑥2)(1 − 𝑘2𝑥2)

(3)

Definition 2 (Complete elliptic integral of
the second kind):

𝐸(𝑘) = ∫
1

0

√1 − 𝑘2𝑥2

1 − 𝑥2 d𝑥 (4)

1. Introduction to Electrostatics
Theorem 3 (Green's first identity):

∫
𝑉

(𝜑∇2𝜓 + 𝛁𝜑 ⋅ 𝛁𝜓) d3𝑥 = ∮
𝑆

𝜑𝜕𝜓
𝜕𝑛

d𝑎 (5)

proof: Substitute ⃗𝐴 in divergence theorem
with 𝜑𝛁𝜓. ∎

Theorem 4 (Green's second identity):

∫
𝑉

(𝜑∇2𝜓 − 𝜓∇2𝜑) d3𝑥

= ∮
𝑆
(𝜑𝜕𝜓

𝜕𝑛
− 𝜓𝜕𝜑

𝜕𝑛
) d𝑎 (6)

proof: interchange 𝜑 and 𝜓 in Green’s first
identity and then substract. ∎

1.1. Poisson and Laplace Equations
The behavior of an electrostatics field is
described by

𝛁 · ⃗𝐸 = 𝜌
𝜖0

(7)

𝛁 × ⃗𝐸 = 0 (8)

Definition 3 (Poisson equation): The electric
potential Φ satisfies the equation

∇2Φ = − 𝜌
𝜖0

(9)
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Definition 4 (Laplacian equation):  In
regions of space lacking charge, the Poisson

equation becomes

∇2Φ = 0 (10)

1.2. Solution of Boundary-Value
Problem with Green Function

Theorem 5 (Gauss's theorem):

∮ ⃗𝐸 ⋅ d ⃗𝑎 = 𝑞
4𝜋𝜀0

∫ dΩ (11)

Definition 5 (Green function): A function

𝐺( ⃗𝑥, ⃗𝑥′) = 1
| ⃗𝑥 − ⃗𝑥′|

+ 𝐹( ⃗𝑥, ⃗𝑥′) (12)

must satisfy the condition that:

∇′2𝐺( ⃗𝑥, ⃗𝑥′) = −4𝜋𝛿( ⃗𝑥 − ⃗𝑥′) (13)

And with 𝐹  satisfying the Laplace equation
inside the volume 𝑉

Theorem 6 (general solution for Poisson
function):

Φ( ⃗𝑥) = 1
4𝜋𝜖0

∫
𝑉

𝜌( ⃗𝑥′)𝐺( ⃗𝑥, ⃗𝑥′) d3𝑥′ +

1
4𝜋

∮
𝑆
(𝐺( ⃗𝑥, ⃗𝑥′) 𝜕Φ

𝜕𝑛′ − Φ( ⃗𝑥′)𝜕𝐺( ⃗𝑥, ⃗𝑥′)
𝜕𝑛′ ) d𝑎′(14)

proof: Plug 𝐺( ⃗𝑥, ⃗𝑥′) and Φ into Eq. 6 ∎

Theorem 7: solution of Poisson equation
with Dirichlet or Neumann boundary

conditions is unique

proof: Let 𝑈 = Φ1 − Φ2 and use Theorem 3. ∎

Definition 6 (Dirichlet boundary
conditions):

𝐺𝐷( ⃗𝑥, ⃗𝑥′) = 0 for ⃗𝑥 on S (15)

Theorem 8 (Solution to Dirichlet boundary
conditions):

Φ( ⃗𝑥) = 1
4𝜋𝜀0

∫
𝑉

𝜌( ⃗𝑥′)𝐺𝐷( ⃗𝑥, ⃗𝑥′) d3𝑥

− 1
4𝜋

∮ Φ( ⃗𝑥′)𝜕𝐺𝐷
𝜕𝑛′ d𝑎′ (16)

Definition 7 (Neumann boundary
conditions): This is consistent with Gauss’s

theorem that

𝜕
𝜕𝑛′ 𝐺𝑁( ⃗𝑥, ⃗𝑥′) = −4𝜋

𝑆
for ⃗𝑥 on S (17)

Theorem 9 (Solution to Neumann boundary
conditions):

Φ( ⃗𝑥) = ⟨Φ⟩𝑆 + 1
4𝜋𝜀0

∫
𝑉

𝜌( ⃗𝑥′)𝐺𝑁( ⃗𝑥, ⃗𝑥′) d3𝑥

+ 1
4𝜋

∮ 𝐺𝑁
𝜕Φ
𝜕𝑛′ d𝑎′ (18)

1.3. Energy and Capacitance
Theorem 10 (Discrete total potential):

𝑊 = 1
8𝜋𝜀0

∑
𝑖

∑
𝑗

𝑞𝑖𝑞𝑗

| ⃗𝑥𝑖 − ⃗𝑥𝑗|
(19)

Theorem 11 (Continuous total potential):

𝑊 = 1
8𝜋𝜀0

∫ ∫ 𝜌( ⃗𝑥)𝜌( ⃗𝑥′)
| ⃗𝑥𝑖 − ⃗𝑥𝑗|

d3𝑥 d3𝑥′

= 1
2

∫
𝑉

𝜌( ⃗𝑥)Φ( ⃗𝑥) d3𝑥

= −𝜀0
2

∫ Φ∇2Φ d3𝑥 (20)

With self-energy contributions

𝑊 = 𝜀0
2

∫|𝛁Φ|2 d3𝑥

= 𝜀0
2

∫| ⃗𝐸|2 d3𝑥 (21)

Definition 8 (Energy density): With self-
energy contributions

𝑤 = 𝜀0
2

| ⃗𝐸|2 (22)

2. Boundary-Value Problems in
Electrostatics

2.1. Method of Images
What are image charges A small number of

charges
• suitably placed
• appropriately charged
• external to the region of interest
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• simulating the required boundary
conditions

Zero potential plane conductor condition
𝑞′ = −𝑞 and 𝑥′ = −𝑥

Figure 1: Electric filed of 𝑞 away from an
infinite plane conductor

hollow grounded sphere conductor

2.2. Laplace Equation in Rectangular
Coordinates

2.3. Fields in Two-Dimensional
Corners

2.4. Expansion in Spherical
Coordinates

1
| ⃗𝑥 − ⃗𝑥′|

= 4𝜋 ∑
∞

𝑙=0
∑

𝑙

𝑚=−𝑙

1
2𝑙 + 1

𝑟𝑙
<

𝑟𝑙+1
>

𝑌𝑙𝑚(𝜃, 𝜙)𝑌 ∗
𝑙𝑚(𝜃′, 𝜙′)𝑌𝑙𝑚(𝜃, 𝜙) (23)

3. Multipoles and Dielectrics
3.1. Multipole Expansion

Φ( ⃗𝑥) = 1
4𝜋𝜀0

∑
∞

𝑙=0
∑

𝑙

𝑚=−𝑙

4𝜋
2𝑙 + 1

𝑞𝑙𝑚
𝑌𝑙𝑚(𝜃, 𝜙)

𝑟𝑙+1 (24)

Definition 9 (traceless quadrupole
moment):

𝑄𝑖𝑗 = ∫(3𝑥′
𝑖𝑥′

𝑗 − 𝑟′2𝛿𝑖𝑗)𝜌( ⃗𝑥′) d3𝑥′ (25)

⃗𝑝 = ∫ ⃗𝑥′𝜌( ⃗𝑥′) d3𝑥′ (26)

Φ( ⃗𝑥) = 1
4𝜋𝜀0

(𝑞
𝑟

+ ⃗𝑝 ⋅ ⃗𝑥
𝑟3

+1
2

∑
𝑖,𝑗

𝑄𝑖𝑗
𝑥𝑖𝑥𝑗

𝑟5 + …) (27)

4. Relativistic Electromagnetics
𝜕𝜇 = 𝜕

𝜕𝑥𝜇 , 𝜕𝜇 = 𝜕
𝜕𝑥𝜇

(28)
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